A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network
نویسندگان
چکیده
This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.
منابع مشابه
Offline handwritten word recognition using a hybrid neural network and hidden Markov model
This paper describes an approach to combine neural network (NN) and Hidden Markov models (HMM) for solving handwritten word recognition problem. The preprocessing involves generating a segmentation graph that describes all possible ways to segment a word into letters. To recognize a word, the NN computes the observation probabilities for each letter hypothesis in the segmentation graph. The HMM...
متن کاملForward-backward retraining of recurrent neural networks
This paper describes the training of a recurrent neural network as the letter posterior probability estimator for a hidden Markov model, off-line handwriting recognition system. The network estimates posterior distributions for each of a series of frames representing sections of a handwritten word. The supervised training algorithm, backpropagation through time, requires target outputs to be pr...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملDistribution Systems Reconfiguration Using Pattern Recognizer Neural Networks
A novel intelligent neural optimizer with two objective functions is designed for electrical distribution systems. The presented method is faster than alternative optimization methods and is comparable with the most powerful and precise ones. This optimizer is much smaller than similar neural systems. In this work, two intelligent estimators are designed, a load flow program is coded, and a spe...
متن کامل